
PAST: A large-scale, persistent peer-to-peer storage utility

Peter Druschel
Rice University, Houston, TX 77005, USA�

druschel@cs.rice.edu

Antony Rowstron
Microsoft Research, Cambridge, CB2 3NH, UK

antr@microsoft.com

Abstract

This paper sketches the design of PAST, a large-scale,
Internet-based, global storage utility that provides scala-
bility, high availability, persistence and security. PAST
is a peer-to-peer Internet application and is entirely self-
organizing. PAST nodes serve as access points for clients,
participate in the routing of client requests, and contribute
storage to the system. Nodes are not trusted, they may join
the system at any time and may silently leave the system
without warning. Yet, the system is able to provide strong
assurances, efficient storage access, load balancing and
scalability.

Among the most interesting aspects of PAST’s design are
(1) the Pastry location and routing scheme, which reliably
and efficiently routes client requests among the PAST nodes,
has good network locality properties and automatically re-
solves node failures and node additions; (2) the use of ran-
domization to ensure diversity in the set of nodes that store a
file’s replicas and to provide load balancing; and (3) the op-
tional use of smartcards, which are held by each PAST user
and issued by a third party called a broker. The smartcards
support a quota system that balances supply and demand of
storage in the system.

1 Introduction

There are currently many projects aimed at construct-
ing peer-to-peer applications and understanding more of
the issues and requirements of such applications and sys-
tems [1, 2, 4, 5, 6, 7]. Peer-to-peer systems can be charac-
terized as distributed systems in which all nodes have iden-
tical capabilities and responsibilities and all communication
is symmetric. We are developing PAST, an Internet-based,
peer-to-peer global storage utility, which aims to provide
strong persistence, high availability, scalability and security.

The PAST system is composed of nodes connected to
the Internet, where each node is capable of initiating and

�Work done in part while visiting Microsoft Research, Cambridge, UK.

routing client requests to insert or retrieve files. Optionally,
nodes may also contribute storage to the system. The PAST
nodes form a self-organizing overlay network. Inserted files
are replicated on multiple nodes to ensure persistence and
availability. With high probability, the set of nodes over
which a file is replicated is diverse in terms of geographic
location, ownership, administration, network connectivity,
rule of law, etc. Additional copies of popular files may be
cached in any PAST node to balance query load.

A storage utility like PAST is attractive for several rea-
sons. First, it exploits the multitude and diversity (in ge-
ography, ownership, administration, jurisdiction, etc.) of
nodes in the Internet to achieve strong persistence and high
availability. This obviates the need for physical transport
of storage media to protect backup and archival data; like-
wise, it renders unnecessary the explicit mirroring of shared
data for high availability and throughput. A global storage
utility also facilitates the sharing of storage and bandwidth,
thus permitting a group of nodes to jointly store or publish
content that exceeds the capacity of any individual node.

While PAST offers persistent storage services, its ac-
cess semantics differ from that of a conventional filesystem.
Files stored in PAST are associated with a quasi-unique
fileId that is generated at the time of the file’s insertion into
PAST. Therefore, files stored in PAST are immutable since
a file cannot be inserted multiple times with the same fileId.
Files can be shared at the owner’s discretion by distribut-
ing the fileId (potentially anonymously) and, if necessary, a
decryption key. PAST does not support a delete operation.
Instead, the owner of a file may reclaim the storage associ-
ated with a file, which does not guarantee that the file is no
longer available. These weaker semantics avoid agreement
protocols among the nodes storing the file.

An efficient routing scheme called Pastry [11] ensures
that client requests are reliably routed to the appropriate
nodes. Client requests to retrieve a file are routed to a node
that is “close in the network”1 to the client that issued the
request, among all live nodes that store the requested file.
The number of PAST nodes traversed while routing a client

1Network proximity is based on a scalar metric, such as the number of
IP hops, geographic distance, or a combination of these and other factors.



request is at most logarithmic in the total number of PAST
nodes in the system under normal operation.

A storage management scheme in PAST ensures that the
global storage utilization in the system can approach 100%,
despite the lack of centralized control and widely differing
file sizes and storage node capacities [12]. In a decentral-
ized storage system where nodes are not trusted, an addi-
tional mechanism is required that ensures a balance of stor-
age supply and demand. Towards this end, PAST includes
a secure quota system. In simple cases, users are assigned
fixed quotas, or they are allowed to use as much storage
as they contribute. Optionally, organizations called brokers
may trade storage and issue smartcards to users, which con-
trol how much storage must be contributed and/or may be
used. The broker is not directly involved in the operation of
the PAST network, and its knowledge about the system is
limited to the number of smartcards it has circulated, their
quotas and expiration dates.

Another issue in peer-to-peer systems, and particularly in
storage and file-sharing systems, is privacy and anonymity.
A provider of storage space used by others may not want to
risk prosecution for content it stores, and clients inserting or
retrieving files may not wish to reveal their identity. PAST
clients and storage providers need not trust each other, and
place only limited trust in brokers. In particular, all nodes
trust the brokers to facilitate the operation of a secure PAST
network by balancing storage supply and demand via re-
sponsible use of the quota system. On the other hand, users
need not reveal to brokers (or anyone else) their identity,
the files they are retrieving, inserting or storing. Each user
holds an initially unlinkable pseudonym [8] in the form of
a public key. The pseudonym is not easily linkable to the
user’s identity, unless the user voluntarily reveals the bind-
ing. If desired, a user may use multiple pseudonyms to ob-
scure that certain operations were initiated by the same user.
To provide stronger levels of anonymity and other proper-
ties such as anti-censorship, additional mechanisms may be
layered on top of PAST [14, 15, 16].

2 PAST design

Some of the key aspects of PAST’s architecture are (1)
the Pastry routing scheme, which routes client requests
in less than dlog16Ne steps on average within a self-
organizing, fault tolerant overlay network; (2) the use of
randomization to ensure probabilistic storage load balanc-
ing and diversity of nodes that store replicas of a file, with-
out the need for centralized control or expensive distributed
agreement protocols; (3) a decentralized storage manage-
ment and caching scheme that balances the storage utiliza-
tion among the nodes as the total utilization of the sys-
tem approaches 100%, and balances query load by caching
copies of popular files close to interested clients; and, (4)

the optional use of smartcards, which support a quota sys-
tem to control storage supply and demand.

PAST is composed of nodes connected to the Internet.
Each node can act as a storage node and a client access point
and is assigned a 128-bit node identifier (nodeId), derived
from a cryptographic hash of the node’s public key. Each
file that is inserted into PAST is assigned a 160-bit fileId,
corresponding to the cryptographic hash of the file’s textual
name, the owner’s public key and a random salt. Before
a file is inserted, a file certificate is generated, which con-
tains the fileId, its replication factor k, the salt, the insertion
date and a cryptographic hash of the file’s content. The file
certificate is signed by the file’s owner.

When a file is inserted in PAST, Pastry routes the file to
the k nodes whose node identifiers are numerically closest
to the 128 most significant bits of the file identifier (fileId).
Each of these nodes then stores a copy of the file. The
replication factor k depends on the availability and persis-
tence requirements of the file and may vary between files. A
lookup request for a file is routed towards the live node with
a nodeId that is numerically closest to the requested fileId.

This procedure ensures that (1) a file remains available
as long as one of the k nodes that store the file is alive and
reachable via the Internet; (2) with high probability, the set
of nodes that store the file is diverse in geographic loca-
tion, administration, ownership, network connectivity, rule
of law, etc.; and, (3) the number of files assigned to each
node is roughly balanced. (1) follows from the properties
of the PAST routing algorithm described in Section 2.2. (2)
and (3) follow from the uniformly distributed, quasi-random
identifiers assigned to each node and file.

In the following, we discuss some of the key aspects of
PAST’s design, namely security, routing and content loca-
tion, self-organization, storage management and caching.

2.1 Security

PAST’s security model is based on the following as-
sumptions: (1) It is computationally infeasible to break the
public-key cryptosystem and the cryptographic hash func-
tion used in PAST; (2) while clients, node operators and
node software are not trusted and attackers may control the
behavior of individual PAST nodes, it is assumed that most
nodes in the overlay network are well behaved; and, (3) an
attacker cannot control the behavior of the smartcards.

In the following discussion, we assume the use of smart-
cards. As discussed later in this section, it is possible to
operate a PAST network without smartcards. Each PAST
node and each user of the system hold a smartcard. A
private/public key pair is associated with each card. Each
smartcard’s public key is signed with the smartcard issuer’s
private key for certification purposes. The smartcards gen-
erate and verify various certificates used during insert and



reclaim operations and they maintain storage quotas. Next,
we sketch the main security related functions.

Generation of nodeIds A smartcard provides the nodeId
for an associated PAST node. The nodeId is based on a
cryptographic hash of the smartcard’s public key. This as-
signment of nodeIds probabilistically ensures uniform cov-
erage of the space of nodeIds and diversity of nodes with
adjacent nodeIds, in terms of geographic location, network
attachment, ownership, rule of law, etc. Furthermore, nodes
can verify the authenticity of each other’s nodeIds.

Generation of file certificates and store receipts The
smartcard of a user wishing to insert a file into PAST issues
a file certificate. The certificate contains a cryptographic
hash of the file’s contents (computed by the client node),
the fileId (computed by the smartcard), the replication fac-
tor, the salt, and is signed by the smartcard. During an insert
operation, the file certificate allows each storing node to ver-
ify (1) that the user is authorized to insert the file into the
system, which prevents clients from exceeding their storage
quotas; (2) that the contents of the file arriving at the stor-
ing node have not been corrupted en route from the client
by faulty or malicious intermediate nodes; and, (3) that the
fileId is authentic, thus defeating denial-of-service attacks
where malicious clients try to exhaust storage at a subset of
PAST nodes by choosing fileIds with nearby values. Each
storage node that has successfully stored a copy of the file
then issues and returns a store receipt to the client, which
allows the client to verify that k copies of the file have been
created on nodes with adjacent nodeIds, which prevents a
malicious node from suppressing the creation of k diverse
replicas. During a retrieve operation, the file certificate is
returned along with the file, and allows the client to verify
that the contents are authentic.

Generation of reclaim certificates and receipts Prior to
issuing a reclaim operation, the user’s smartcard generates
a reclaim certificate. The certificate contains the fileId, is
signed by the smartcard and is included with the reclaim re-
quest that is routed to the nodes that store the file. When
processing a reclaim request, the smartcard of a storage
node first verifies that the signature in the reclaim certificate
matches that in the file certificate stored with the file. This
prevents users other than the owner of the file from reclaim-
ing the file’s storage. If the reclaim operation is accepted,
the smartcard of the storage node generates a reclaim re-
ceipt. The receipt contains the reclaim certificate and the
amount of storage reclaimed; it is signed by the smartcard
and returned to the client.

Storage quotas The smartcard maintains storage quotas.
Each user’s smartcard is issued with a usage quota, de-
pending on how much storage the client is allowed to use.
When a file certificate is issued, an amount correspond-
ing to the file size times the replication factor is debited

against the quota. When the client presents an appropri-
ate reclaim receipt issued by a storage node, the amount re-
claimed is credited against the client’s quota. This prevents
clients from exceeding the storage quota they have paid for.
A node’s smartcard specifies the amount of storage con-
tributed by the node (possibly zero). Nodes are randomly
audited to see if they can produce files they are supposed to
store, thus exposing nodes that cheat by offering less stor-
age than indicated by their smartcard.

In the following, we briefly discuss how some of the sys-
tem’s key properties are maintained.

System integrity Several conditions ensure the basic in-
tegrity of a PAST system. Firstly, to maintain approximate
load balancing among storage nodes, the nodeIds and fileIds
should each be uniformly distributed. The procedure for
generating and verifying nodeIds and fileIds ensures this.
Secondly, there must be a balance between the sum of all
client quotas (potential demand) and the total available stor-
age in the system (supply). The broker ensures that balance,
potentially using the monetary price of storage to regulate
supply and demand. Thirdly, individual malicious nodes
must be incapable of persistently denying service to a client.
A randomized routing protocol, described in Section 2.2,
ensures that a retried operation will eventually be routed
around the malicious node.

Persistence File persistence in PAST depends primarily
on three conditions. (1) Unauthorized users are prevented
from reclaiming a file’s storage, (2) the file is stored on k
storage nodes, and (3) there is sufficient diversity in the set
of storage nodes that store a file. By issuing and requiring
reclaim certificates, the smartcards ensure condition (1). (2)
is enforced through the use of store receipts and (3) is en-
sured by the quasi-random distribution of nodeIds, which
can’t be biased by an attacker. The choice of a replication
factor k must take into account the expected rate of transient
storage node failures to ensure sufficient availability. In the
event of storage node failures that involve loss of the stored
files, the system automatically restores k copies of a file as
part of a failure recovery procedure [12].

Data privacy and integrity Users may use encryption to
protect the privacy of their data, using a cryptosystem of
their choice. Data encryption does not involve the smart-
cards. Data integrity is ensured by means of the file certifi-
cates issued by the smartcards.

Pseudonymity A user’s smartcard signature is the only
information associating a stored file or a request with the
responsible user. The association between a smartcard and
the user’s identity is only known to the user, unless the user
voluntarily releases this information. Pseudonymity of stor-
age nodes is similarly ensured because the node’s smartcard
signature is not linkable to the identity of the node operator.
Moreover, the Pastry routing scheme avoids the widespread



dissemination of information about the mapping between
nodeIds and IP addresses.

Smartcards Next, we briefly reflect on the role of smart-
cards and brokers in PAST. The use of smartcards and even
the presence of brokers as trusted third parties are not fun-
damental to PAST’s design. First, smartcards could be re-
placed by secure on-line quota services run by the brokers.
Second, it is possible to run PAST without a third party.
However, given today’s technology, the smartcards/brokers
solve several issues efficiently:

(1) The smartcards/brokers ensure the integrity of nodeId
and fileId assignment. Without a third party, it more difficult
and expensive to prevent attackers from choosing, by trial
and error, fileIds or nodeIds that fall between two adjacent
existing PAST nodeIds.

(2) The smartcards maintain storage quotas securely and
efficiently. Achieving the same scalability and efficiency
with an on-line quota service is difficult. Enforcing quotas
in the absence of a trusted third party would likely require
complex agreement protocols.

(3) The smartcards are a convenient medium through
which a user can obtain necessary credentials to join the
system in an anonymous fashion. A user can obtain a smart-
card with the desired quota from a retail outlet anonymously
in exchange for cash. Obtaining the credentials on-line car-
ries the risk of revealing the user’s identity or leaking sensi-
tive information to third parties.

There are disadvantages to the use of smartcards. First,
clients need to obtain a card and periodically replace it (e.g.,
every year) to ensure key freshness. Second, sophisticated,
resource-rich attackers could compromise a smartcard, per-
mitting them to cheat against the storage quota and mount
certain limited denial-of-service attacks until the card is re-
voked or expires.

Finally, there are performance costs due to the limited
processing speed and I/O performance of smartcards. For-
tunately, read operations involve no smartcard operations.
(In fact, read-only users do not need a smartcard). Write
operations require a file certificate verification and a store
receipt generation, and we expect that a smartcard keeps up
with the speed of a single disk. Larger storage nodes use
multiple smartcards, and very large storage nodes may re-
quire more powerful tamperproof hardware. Professionally
managed storage sites also have the option of contracting
with a broker, thus obviating the need for trusted hardware.

Future Internet technologies like an anonymous trans-
actions and micropayment infrastructure could obviate the
need for smartcards in PAST. For instance, micro-payments
could be used to balance the supply and demand of storage
without quotas, and anonymous transactions could make it
possible for a user to securely and anonymously obtain nec-
essary credentials, including nodeIds and fileIds. We plan

to re-evaluate the use of smartcards as alternatives become
available.

It is to be noted that multiple PAST systems can co-exist
in the Internet. In fact, we envision PAST networks run
by many competing brokers, where a client can access files
in the entire system. Furthermore, it is possible to operate
isolated PAST systems that serve a mutually trusting com-
munity without a broker or smartcards. In these cases, a
virtual private network (VPN) can be used to interconnect
the system’s nodes.

2.2 Pastry

We now briefly describe Pastry, the location and routing
scheme used by PAST. Given a fileId, Pastry routes the as-
sociated message towards the node whose nodeId is numer-
ically closest to the 128 most significant bits (msb) of the
fileId, among all live nodes. Given the invariant that a file is
stored on the k nodes whose nodeIds are numerically clos-
est to the 128 msbs of the fileId, it follows that a file can be
located unless all k nodes have failed simultaneously (i.e.,
within a recovery period).

Pastry is highly efficient, scalable, fault resilient and self-
organizing. Assuming a PAST network consisting of N
nodes, Pastry can route to the numerically closest node to
a given fileId in less than dlog2bNe steps on average (b is
a configuration parameter with typical value 4). With con-
current node failures, eventual delivery is guaranteed unless
bl=2c nodes with adjacent nodeIds fail simultaneously (l is
a configuration parameter with typical value 32).

The tables required in each PAST node have only (2 b �
1) � dlog2bNe+2l entries, where each entry maps a nodeId
to the associated node’s IP address. Moreover, after a
node failure or the arrival of a new node, the invariants in
all affected routing tables can be restored by exchanging
O(log2bN) messages among the affected nodes. In the fol-
lowing, we briefly sketch the Pastry routing algorithm.

For the purpose of routing, nodeIds and fileIds are
thought of as a sequence of digits with base 2b. A node’s
routing table is organized into dlog2bNe levels with 2b � 1
entries each. The 2b � 1 entries at level n of the routing ta-
ble each refer to a node whose nodeId matches the present
node’s nodeId in the first n digits, but whose n + 1th digit
has one of the 2b � 1 possible values other than the n+1th
digit in the present node’s id. The uniform distribution of
nodeIds ensures an even population of the nodeId space;
thus, only dlog2bNe levels are populated in the routing ta-
ble. Each entry in the routing table points to one of poten-
tially many nodes whose nodeIds have the appropriate pre-
fix. Among such nodes, the one closest to the present node,
according to the proximity metric, is chosen in practice.

In addition to the routing table, each node maintains IP
addresses for the nodes in its leaf set, i.e., the set of nodes



with the l=2 numerically closest larger nodeIds, and the l=2
nodes with numerically closest smaller nodeIds, relative to
the present node’s nodeId.

In each routing step, a node normally forwards the mes-
sage to a node whose nodeId shares with the fileId a prefix
that is at least one digit (or b bits) longer than the prefix that
the fileId shares with the present node’s id. If no such node
exists, the message is forwarded to a node whose nodeId
shares a prefix with the fileId as long as the current node,
but is numerically closer to the fileId than the present node’s
id. It follows from the definition of the leaf set that such a
node exists unless bl=2c adjacent nodes in the leaf set have
failed simultaneously.
Locality Next, we briefly discuss Pastry’s locality proper-
ties vis-à-vis the proximity metric. Recall that the entries
in the node routing tables are chosen to refer to a nearby
node, in terms of the proximity metric, with the appropriate
nodeId prefix. As a result, in each step a message is routed
to a “nearby” node with a longer prefix match (by one digit).
This local heuristic clearly can’t achieve globally shortest
routes, but simulations have shown that the average distance
traveled by a message, in terms of the proximity metric, is
only 50% higher than the corresponding “distance” of the
source and destination in the underlying network [11].

Moreover, since Pastry repeatedly takes a locally “short”
routing step, messages have a tendency to first reach a node,
among the k nodes that store the requested file, that is near
the client, according to the proximity metric. One experi-
ment shows that among 5 replicated copies of a file, Pas-
try is able to find the “nearest” copy in 76% of all lookups
and it finds one of the two “nearest” copies in 92% of all
lookups [11].
Node addition and failure A key design issue in Pastry is
how to efficiently and dynamically maintain the node state,
i.e., the routing table, leaf set and neighborhood sets, in the
presence of node failures, node recoveries, and new node
arrivals. The protocol is described and evaluated in [11].

Briefly, an arriving node with the new nodeIdX can ini-
tialize its state by contacting a nearby node A (according to
the proximity metric) and asking A to route a special mes-
sage to the existing nodeZ with nodeId numerically closest
to X . X then obtains the leaf set from Z, the neighborhood
set from A, and the ith row of the routing table from the
ith node encountered along the route from A to Z. One can
show that using this information, X can correctly initialize
its state and notify interested nodes that need to know of its
arrival, thereby restoring all of Pastry’s invariants.

To handle node failures, neighboring nodes in the nodeId
space (which are aware of each other by virtue of being in
each other’s leaf set) periodically exchange keep-alive mes-
sages. If a node is unresponsive for a period T , it is pre-
sumed failed. All members of the failed node’s leaf set are
then notified and they update their leaf sets to restore the

invariant. Since the leaf sets of nodes with adjacent nodeIds
overlap, this update is trivial. A recovering node contacts
the nodes in its last known leaf set, obtains their current
leafs sets, updates its own leaf set and then notifies the mem-
bers of its presence. Routing table entries that refer to failed
nodes are repaired lazily; the details are described in [11].
Fault-tolerance The routing scheme as described so far
is deterministic, and thus vulnerable to malicious or failed
nodes along the route that accept messages but do not cor-
rectly forward them. Repeated queries could thus fail each
time, since they are likely to take the same route.

To overcome this problem, the routing is actually ran-
domized. To avoid routing loops, a message must always
be forwarded to a node that shares at least as long a prefix
with, but is numerically closer to the destination node in the
namespace than the current node. The choice among mul-
tiple suitable nodes is random. In practice, the probability
distribution is heavily biased towards the best choice to en-
sure low average route delay. In the event of a malicious
or failed node along the path, the query may have to be re-
peated several times by the client, until a route is chosen
that avoids the bad node.

2.3 Storage management and caching

The statistical assignment of files to storage nodes in
PAST approximately balances the number of files stored at
each node. However, non-uniform storage node capacities
and file sizes require more explicit storage load balancing to
permit graceful behavior under high global storage utiliza-
tion; and, non-uniform popularity of files requires caching
to minimize fetch distance and to balance the query load.

PAST employs a storage management scheme that
achieves high global storage utilization while rejecting few
file insert requests. The scheme relies only on local coor-
dination among the nodes in a leaf set, and imposes little
overhead. Experimental results show that PAST can achieve
global storage utilization in excess of 95%, while the rate of
rejected file insertions remains below 5% and failed inser-
tions are heavily biased towards large files [12].

Any PAST node can cache additional copies of a file,
which achieves query load balancing, high throughput for
popular files, and reduces fetch distance and network traffic.
Storage management and caching are described in [12].

3 Related work

There are currently several peer-to-peer systems in use,
and many more are under development. Among the most
prominent are file sharing facilities, such as Gnutella [2]
and Freenet [5]. The Napster [1] music exchange service
provided much of the original motivation for peer-to-peer
systems, but it is not a pure peer-to-peer system because its



database is centralized. All three systems are primarily in-
tended for the large-scale sharing of data files; persistence
and reliable content location are not guaranteed or neces-
sary in this environment.

In comparison, PAST aims at combining the scalabil-
ity and self-organization of systems like FreeNet with the
strong persistence and reliability expected of an archival
storage system. In this regard, it is more closely related with
projects like OceanStore [7], FarSite [4], FreeHaven [6],
and Eternity [3]. FreeNet, FreeHaven and Eternity are more
focused on providing strong anonymity and anti-censorship.

OceanStore provides a global, transactional, persistent
storage service that supports serializable updates on widely
replicated and nomadic data. In contrast, PAST provides
a simple, lean storage abstraction for persistent, immutable
files with the intention that more sophisticated storage se-
mantics be built on top of PAST if needed.

FarSite has more traditional filesystem semantics, while
PAST is more targeted towards global, archival storage.
Farsite uses a distributed directory service to locate con-
tent; this is different from PAST’s Pastry scheme, which
integrates content location and routing.

Pastry, along with Tapestry [17], Chord [13] and
CAN [10], represent a second generation of peer-to-peer
routing and location schemes that were inspired by the pio-
neering work of systems like FreeNet and Gnutella. Unlike
that earlier work, they guarantee a definite answer to a query
in a bounded number of network hops, while retaining the
scalability of FreeNet and the self-organizing properties of
both FreeNet and Gnutella.

Pastry and Tapestry bear some similarity to the work by
Plaxton et al [9]. The approach of routing based on address
prefixes, which can be viewed as a generalization of hyper-
cube routing, is common to all three schemes. However,
the Plaxton scheme is not self-organizing and it associates
a “root” node with each file, which forms a single point
of failure. Pastry and Tapestry differ in their approach to
achieving network locality and to replicating objects, and
Pastry appears to be less complex.

The Chord protocol is closely related to Pastry, but in-
stead of routing based on address prefixes, Chord forwards
messages based on numerical difference with the destina-
tion address. Unlike Pastry, Chord makes no explicit effort
to achieve good network locality.

CAN routes messages in a d-dimensional space, where
each node maintains a routing table with O(d) entries and
any node can be reached in O(dN 1=d) routing hops. Unlike
Pastry, the routing table does not grow with the network
size, but the number of routing hops grows faster than logN .

References

[1] Napster. http://www.napster.com/.

[2] The Gnutella protocol specification, 2000.
http://dss.clip2.com/GnutellaProtocol04.pdf.

[3] R. Anderson. The Eternity service. In Proc.
PRAGOCRYPT’96, pages 242–252. CTU Publishing House,
1996. Prague, Czech Republic.

[4] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Fea-
sibility of a serverless distributed file system deployed on
an existing set of desktop pcs. In Proc. ACM SIGMET-
RICS’2000, pages 34–43, 2000.

[5] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:
A distributed anonymous information storage and retrieval
system. In Workshop on Design Issues in Anonymity and
Unobservability, pages 311–320, July 2000. ICSI, Berkeley,
CA, USA.

[6] R. Dingledine, M. J. Freedman, and D. Molnar. The Free
Haven project: Distributed anonymous storage service. In
Proc. Workshop on Design Issues in Anonymity and Unob-
servability, Berkeley, CA, July 2000.

[7] J. Kubiatowicz, D. Bindel, P. Eaton, Y. Chen, D. Geels,
R. Gummadi, S. Rhea, W. Weimer, C. Wells, H. Weather-
spoon, and B. Zhao. Oceanstore: An architecture for global-
scale persistent store. In Proc. ACM ASPLOS’2000, Cam-
bridge, MA, November 2000.

[8] A. Pfitzmann and M. Köhntopp. Anonymity, unob-
servability, and pseudonymity: A proposal for termi-
nology, Apr. 2001. http://www.koehntopp.de/marit/pub/anon/
Anon Terminology IHW.pdf.

[9] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
nearby copies of replicated objects in a distributed environ-
ment. Theory of Computing Systems, 32:241–280, 1999.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proc. ACM SIGCOMM’01, San Diego, CA, Aug. 2001.

[11] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Proc. IFIP/ACM Middleware 2001, Heidelberg,
Germany, Nov. 2001.

[12] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer stor-
age utility. In Proc. ACM SOSP’01, Banff, Canada, Oct.
2001.

[13] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for Internet applications. In Proc. ACM SIGCOMM’01, San
Diego, CA, Aug. 2001.

[14] A. Stubblefield and D. S. Wallach. Dagster: Censorship-
resistant publishing without replication. Technical Report
TR01-380, Rice University, Houston, Texas, July 2001.

[15] M. Waldman and D. Mazières. Tangler - a censorship resis-
tant publishing system based on document entanglements.
In Eighth ACM Conference on Computer and Communica-
tions Security, Nov. 2001.

[16] M. Waldman, A. D. Rubin, and L. F. Cranor. Publius: A
robust, tamper-evident, censorship-resistant, web publishing
system. In Proc. 9th USENIX Security Symposium, pages
59–72, Denver, CO, August 2000.

[17] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An infrastructure for fault-resilient wide-area location and
routing. Technical Report UCB//CSD-01-1141, U. C.
Berkeley, April 2001.


