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Abstract

Cooperative peer-to-peer applications are designed to
share the resources of each computer in an overlay net-
work for the common good of everyone. However, users
do not necessarily have an incentive to donate resources
to the system if they can get the system’s resources for
free. This paper presents architectures for fair sharing
of storage resources that are robust against collusions
among nodes. We show how requiring nodes to pub-
lish auditable records of their usage can give nodes eco-
nomic incentives to report their usage truthfully, and we
present simulation results that show the communication
overhead of auditing is small and scales well to large
networks.

1 Introduction

A large number of peer-to-peer (p2p) systems
have been developed recently, providing a general-
purpose network substrate [10, 11, 13, 14, 16] suit-
able for sharing files [6, 7], among other appli-
cations. In practice, particularly with widespread
p2p systems such as Napster, Gnutella, or Kazaa,
many users may choose to consume the p2p sys-
tem’s resources without providing any of their own
resources for the use of others [1]. Users have no
naturalincentiveto provide services to their peers if
it is not somehow required of them.

This paper considers methods to design such re-
quirements directly into the p2p system. While
we could take a traditional quota enforcement ap-
proach, requiring some kind of trusted authority to
give a user “permission” to store files, such notions
are hard to create in a network of peers. Why should
some peers be placed in a position of authority over
others? If all nodes were to publish their resource
usage records, directly, where other nodes are audit-
ing those records as a part of the normal functioning
of the system, we might be able to create a system
where nodes have natural incentives to publish their
records accurately. Ideally, we would like to design

a system where nodes, acting selfishly, behave col-
lectively to maximize the common welfare. When
such a system has no centralized authority with to-
tal knowledge of the system making decisions, this
becomes a distributed algorithmic mechanism de-
sign (DAMD) problem [9], a current area of study
which combines computational tractability in theo-
retical computer science with incentive-compatible
mechanism design in the economics literature.

To illustrate the power of such economic systems,
we focus on the specific problem of fair sharing in
p2p storage systems, although our techniques can
potentially be extended to discuss fairness in band-
width consumption and other resources. Section 2
discusses adversarial models that a storage system
must be designed to address. Section 3 discusses
different approaches to implementing fairness poli-
cies in p2p storage systems. Section 4 presents
some simulation results. Finally, Section 5 dis-
cusses related work and Section 6 concludes.

2 Models

Our goal is to support a notion of fair sharing such
as limiting any given node to only consuming as
much of the network’s storage as it provides space
for others on its local disk. A centralized broker that
monitored all transactions could accomplish such a
feat, but it would not easily scale to large numbers
of nodes, and it would form a single point of failure;
if the broker was offline, all file storage operations
would be unable to proceed.

We will discuss several possible decentralized de-
signs in Section 3, where nodes in the p2p network
keep track of each others’ usage, but first we need to
understand the threats such a design must address.
It is possible that some nodes may wish to collude
to corrupt the system, perhaps gaining more storage
for each other than they collectively provide to the
network. We consider three adversarial models:



No collusion Nodes, acting on their own, wish to
gain an unfair advantage over the network, but
they have no peers with which to collude.

Minority collusion A subset of the p2p network is
willing to form a conspiracy to lie about their
resource usage. However, it is assumed that
most nodes in the p2p network are uninterested
in joining the conspiracy.

Minority bribery The adversary may choose spe-
cific nodes to join the conspiracy, perhaps of-
fering them a bribe in the form of unfairly in-
creased resource usage.

This paper focuses primarily on minority collusions.
While bribery is perfectly feasible, and we may well
even be able to build mechanisms that are robust
against bribery, it is entirely unclear that the lower-
level p2p routing and messaging systems can be
equally robust. In studying routing security for p2p
systems, Castro et al. [3] focused only on minority
collusions. Minority bribery would allow very small
conspiracies of nodes to defeat the secure routing
primitives. For the remainder of this paper, we as-
sume the correctness of the underlying p2p system.

We note that the ability to consume resources, such
as remote disk storage, is a form of currency, where
remote resources have more value to a node than
its local storage. When nodes exchange their local
storage for others’ remote storage, the trade benefits
both parties, giving an incentive for them to cooper-
ate. As such, there is no need for cash or other forms
of money to exchange hands; the storage economy
can be expressed strictly as a barter economy.

3 Designs

In this section, we describe three possible designs
for storage accounting systems. For all of these de-
signs, we assume the existence of a public key in-
frastructure, allowing any node to digitally sign a
document such that any other node can verify it, yet
it is computationally infeasible for others to forge.

Likewise, for any of these designs, it is imperative
to ensure that nodes are actually storing the files
they claim to store. This is guaranteed by the fol-
lowing challengemechanism. For each file a node
is storing, it periodically picks a node that stores a
replica of the same file as a target, and notifies all
other replicas holders of the file that it is challenging

that target. Then it randomly selects a few blocks of
the file and queries the target for the hash of those
blocks. The target can answer correctly only if it has
the file. The target may ask another replica holder
for a copy of the file, but any such request during a
challenge would cause the challenger to be notified,
and thus able to restart the challenge for another file.

3.1 Smart cards

The original PAST paper [7] suggested the use of
smart cards to enforce storage quotas. The smart
card produces signed endorsements of a node’s re-
quests to consume remote storage, while charging
that space to an internal counter. When storage is
reclaimed, the remote node returns a signed mes-
sage that the smart card can verify before crediting
its internal counter.

Smart cards avoid the bandwidth overheads of the
decentralized designs discussed in this paper. How-
ever, smart cards must be issued by a trusted organi-
zation, and periodically re-issued to invalidate com-
promised cards. This requires a business model that
generates revenues to cover the cost of running the
organization. Thus, smart cards appear to be unsuit-
able for grassroots p2p systems.

3.2 Quota managers

If each smart card was replaced by a collection of
nodes in the p2p network, the same design would
still be applicable. We can define themanager set
for a node to be a set of nodes adjacent to that
node in the overlays node indentifier (nodeId) space,
making them easy for other parties in the overlay
to discover and verify. Each manager must remem-
ber the amount of storage consumed by the nodes
it manages and must endorse all requests from the
managed nodes to store new files. To be robust
against minority collusion, a remote node would in-
sist that a majority of the manager nodes agree that
a given request is authorized, requiring the manager
set to perform a Byzantine agreement protocol [4].

The drawback of this design is that request approval
has a relatively high latency and the number of mali-
cous nodes in any manager set must be less than one
third of the set size. Furthermore, managers suffer
no direct penalty if they grant requests that would
be correctly denied, and thus could be vulnerable to
bribery attacks.



3.3 Auditing

While the smart card and quota manager designs
are focused on enforcing quotas, an alternative ap-
proach is to require nodes to maintain their own
records and publish them, such that other nodes can
audit those records. Of course, nodes have no inher-
ent reason to publish their records accurately. This
subsection describes how we can create natural eco-
nomic disincentives to nodes lying in their records.

3.3.1 Usage files

Every node maintains ausage file, digitally signed,
which is available for any other node to read. The
usage file has three sections:

• the advertised capacitythis node is providing
to the system;

• a local list of (nodeId, fileId) pairs, containing
the identifiers and sizes of all files that the node
is storing locally on behalf of other nodes; and

• a remote listof fileIds of all the files published
by this node (stored remotely), with their sizes.

Together, the local and remote lists describe all the
credits and debits to a node’s account. Note that
the nodeIds for the peers storing the files are not
stored in the remote list, since this information can
be found using mechanisms in the storage system
(e.g., PAST). We say a node is “under quota,” and
thus allowed to write new files into the network,
when its advertised capacity minus the sum of its
remote list, charging for each replica, is positive.

When a nodeA wishes to store a fileF1 on another
nodeB, firstB must fetchA’s usage file to verify that
A is under quota. Then, two records are created:A
addsF1 to its remote list andB adds(A,F1) to its
local list. This is illustrated in Figure 1. Of course,
A might fabricate the contents of its usage file to
convinceB to improperly accept its files.

We must provide incentives forA to tell the truth.
To game the system,A might normally attempt to
either inflate its advertised capacity ordeflatethe
sum of its remote list. IfA were to increase its ad-
vertised capacity beyond the amount of disk it ac-
tually has, this might attract storage requests thatA
cannot honor, assuming the p2p storage system is
operating at or near capacity, which is probably a
safe assumption.A might compensate by creating
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Figure 1: A p2p network with local/remote lists.

fraudulent entries in its local list, to claim the stor-
age is being used. To prevent fraudulent entries in
either list, we define an auditing procedure thatB,
or any other node, may perform onA.

If B detects thatF1 is missing fromA’s remote list,
then B can feel free to delete the file. After all,
A is no longer “paying” for it. Because an audit
could be gamed ifA knew the identity of its au-
ditor, anonymous communication is required, and
can be accomplished using a technique similar to
Crowds [12]. So long as every node that has a re-
lationship withA is auditing it at randomly chosen
intervals,A cannot distinguish whether it is being
audited byB or any other node with files in its re-
mote list. We refer to this process as anormal audit.

Normal auditing, alone, does not provide a disincen-
tive to inflation of the local list. For every entry in
A’s local list, there should exist an entry for that file
in another node’s remote list. An auditor could fetch
the usage file fromA and then connect to every node
mentioned inA’s local list to test for matching en-
tries. This would detect inconsistencies inA’s usage
file, butA could collude with other nodes to push its
debts off its own books. To fully auditA, the au-
ditor would need to audit the nodes reachable from
A’s local list, and recursively audit the nodes reach-
able from those local lists. Eventually, the audit
would discover acheating anchorwhere the books
did not balance (see Figure 2). Implementing such
a recursive audit would be prohibitively expensive.
Instead, we require all nodes in the p2p overlay to
perform random auditing. With a lower frequency
than their normal audits, each node should choose
a node at random from the p2p overlay. The audi-
tor fetches the usage file, and verifies it against the
nodes mentioned in that file’s local list. Assuming
all nodes perform these random audits on a regular
schedule, every node will be audited, on a regular
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Figure 2: A cheating chain, where nodeA is the
cheating anchor.

basis, with high probability.

How high? Consider a network withn nodes, where
c < n nodes are conspiring. The probability that the
cheating anchor is not random audited by any node
in one period is

(

n−2
n−1

)n−c
> 1/e≈ 0.368, and the

cheating anchor would be discovered in three peri-
ods with probability higher than 95%.

Recall that usage files are digitally signed by their
node. Once a cheating anchor has been discovered,
its usage file is effectively asigned confessionof its
misbehavior! This confession can be presented as
evidence toward ejecting the cheater from the p2p
network. With the cheating anchor ejected, other
cheaters who depended on the cheating anchor will
now be exposed and subject to ejection, themselves.

We note that this design is robust even against
bribery attacks, because the collusion will still be
discovered and the cheaters ejected. We also note
that since everybody, including auditors, benefits
when cheaters are discovered and ejected from the
p2p network, nodes do have an incentive to perform
these random audits [8].

3.3.2 Extensions

Selling overcapacity As described above, a node
cannot consume more resources from the network
than it provides itself. However, it is easy to imag-
ine nodes who want to consume more resources
than they provide, and, likewise, nodes who pro-
vide more resources than they wish to consume.
Naturally, this overcapacity could be sold, perhaps
through an online bidding system [5], for real-world
money. These trades could be directly indicated in
the local and remote lists. For example, ifD sells
1GB toE, D can write (E, 1GB trade) in its remote
list, andE writes (D, 1GB trade) in its local list. All

the auditing mechanisms continue to function.

Reducing communication Another issue is that
fetching usage logs repeatedly could result in seri-
ous communication overhead, particularly for nodes
with slow net connections. To address this, we im-
plemented three optimizations. First, rather than
sending the usage logs through the overlay route
used to reach it, they can be sent directly over
the Internet: one hop from the target node to the
anonymizing relay, and one hop to the auditing
node. Second, since an entry in a remote list would
be audited by all nodes replicating the logs, those
replicas can alternately audit that node to share the
cost of auditing. Third, we can reduce communica-
tion by only transmitting diffs of usage logs, since
the logs change slowly. We must be careful that the
anonymity of auditors isn’t compromised, perhaps
using version numbers to act as cookies to track au-
ditors. To address this, the auditor needs to, with
some probability, request the complete usage logs.

4 Experiments

In this section, we present some simulation results
of the communication costs of the quota managers
and the auditing system. For our simulations, we as-
sume all nodes are following the rules and no nodes
are cheating. Both storage space and file sizes are
chosen from truncated normal distributions1. The
storage space of each node is chosen from 2 to
200GB, with an average of 48GB. We varied the
average file size across experiments. In each day
of simulated time, 1% of the files are reclaimed and
republished. Two challenges are made to random
replicas per file a node is storing per day.

For quota managers, we implemented Castro et al.’s
BFT algorithm [4]. With a manager set size of ten,
the protocol can tolerate three nodes with byzantine
faults in any manager set. For auditing, normal au-
dits are performed on average four times daily on
each entry in a node’s remote list and random audits
are done once per day. We simulated both with and
without the append-only log optimization.

Our simulations include per-node overhead for

1The bandwidth consumed for auditing is dependent on the
number, rather than the size, of files being stored. We also
performed simulations using heavy-tailed file size distributions
and obtained similar results.



Pastry-style routing lookups as well as choosing
one node, at random, to create one level of in-
direction on audit requests. The latter provides
weak anonymity sufficient for our purposes. Note
that we only measure the communication overhead
due to storage accounting. In particular, we ex-
clude the cost of p2p overlay maintenance and stor-
ing/fetching of files, since it is not relevant to our
comparison. Unless otherwise specified, all simula-
tions are done with 10,000 nodes, 285 files stored
per nodes, and an average node lifetime of 14 days.

4.1 Results

Figure 3 shows the average upstream bandwidth re-
quired per node, as a function of the number of
nodes (the average required downstream bandwidth
is identical). The per-node bandwidth requirement
is almost constant, thus all systems scale well with
the size of the overlay network.

Figure 4 shows the bandwidth requirement as a
function of the number of files stored per node. The
overheads grow linearly with the number of files,
but for auditing without caching, it grows nearly
twice as fast as the other two designs. Since p2p
storage systems are typically used to store large
files, this overhead is not a concern. Also, the sys-
tem could charge for an appropriate minimum file
size to give users an incentive to combine small files
into larger archives prior to storing them.

Figure 5 shown the overhead versus average node
lifetime. The overhead for quota managers grows
rapidly when the node lifetime gets shorter, mostly
from the cost in joining and leaving manager sets
and from voting for file insertions for new nodes.

Our simulations have also shown that quota man-
agers are more affected by the file turnover rate, due
to the higher cost for voting. Also, the size of man-
ager sets determines the vulnerability of the quota
manager design. To tolerate more malicious nodes,
we need to increase the size of manager sets, which
would result in a higher cost.

In summary, auditing with caching has performance
comparable to quota managers, but is not subject to
bribery attacks and is less sensitive to the fraction of
malicious nodes. Furthermore, in a variety of con-
ditions, the auditing overhead is quite low — only a
fraction of a typical p2p node’s bandwidth.
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Figure 3: Overhead with different number of nodes.
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5 Related Work

Tangler [15] is designed to provide censorship-
resistant publication over a small number of servers
(i.e.,< 30), exchanging data frequently with one an-
other. To maintain fairness, Tangler requires servers
to obtain “certificates” from other servers which can
be redeemed to publish files for a limited time. A
new server can only obtain these certificates by pro-
viding storage for the use of other servers and is not
allowed to publish anything for its first month on-
line. As such, new servers must have demonstrated
good service to the p2p network before being al-
lowed to consume any network services.

The Eternity Service [2] includes an explicit notion
of electronic cash, with which users can purchase
storage space. Once published, a document cannot
be deleted, even if requested by the publisher.

Fehr and Gachter’s study considered an economic
game where selfishness was feasible but could eas-
ily be detected [8]. When their human test subjects
were given the opportunity to spend their money to
punish selfish peers, they did so, resulting in a sys-
tem with less selfish behaviors. This result helps
justify that users will be willing to pay the costs of
random audits.

6 Conclusions

This paper has presented two architectures for
achieving fair sharing of resources in p2p networks.
Experimental results indicate small overheads and
scalability to large numbers of files and nodes. In
practice, auditing provides incentives, allowing us
to benefit from its increased resistance to collusion
and bribery attacks.
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